Distributed algorithms on random graphs.

Krzysztof Krzywdziński
Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, 60-769 Poznań, Poland
kkrzywd@amu.edu.pl

Distributed model of computing is one of the natural models to depict functioning Ad Hoc Networks. One of the key problems concerning the model is finding a maximal independent set (MIS) in a given arbitrary graph on \(n \) vertices. The problem is closely related to the information transmission problems and routing in Ad Hoc Networks. The best known distributed algorithm finds MIS in an arbitrary graph on \(n \) vertices in \(O(\log n) \) synchronous rounds with probability tending to 1 as \(n \to \infty \) (w.h.p.). If one restrict to some subclass of graphs the results might be improved. Namely, for bounded degree and growth-bounded graphs there exist deterministic algorithms which find MIS in \(O(\log^* n) \) synchronous rounds. For trees there exist algorithm which w.h.p. find MIS in \(O\sqrt{\log n \log \log n} \) synchronous rounds.

In the talk we will concentrate on the model of random graphs for the parameters near phase transition and connectivity threshold. We will present a distributed algorithm which w.h.p. finds MIS in Erdős–Rényi random graph in \(o(\log n) \) synchronous rounds.

We will also present related result concerning matchings.