Counting bounded degree spanning trees in random graphs

Alon Naor *

In this talk we discuss the number of bounded degree spanning trees in sparse random graphs. Let \(p \geq f(n) \) where \(f(n) \) is some polylogarithmic function of \(n \), and let \(G \sim G(n, p) \).

We show that for every \(\Delta = \omega \left(\frac{\ln(np)}{\ln \ln(np)} \right) \) the number of spanning trees in \(G \) with maximum degree at most \(\Delta \) is w.h.p. exponentially equal to the expected number of such trees.

Joint work with Dennis Clemens, Asaf Ferber, Michael Krivelevich, Anita Liebenau and Kerstin Weller.