Title: Chasing robbers on random geometric graphs
Name: Pawel Prałat
Affiliation: Department of Mathematics, Ryerson University
Abstract: We study the vertex pursuit game of *Cops and Robbers*, in which cops try to capture a robber on the vertices of the graph. The minimum number of cops required to win on a given graph \(G \) is called the cop number of \(G \). We focus on \(G_d(n, r, p) \), a random subgraph of the random geometric graph in which \(n \) vertices are chosen uniformly at random and independently from \([0, 1]^d\), and two vertices are adjacent with probability \(p \) if the Euclidean distance between them is at most \(r \); \(T_d(n, r, p) \) is defined similarly with the only difference that the torus metric is used instead. We present asymptotic results for the game of Cops and Robber played on \(G_d(n, r, 1) \) and \(T_d(n, r, p) \) for a wide range of \(p = p(n) \) and \(r = r(n) \). (Joint work with Noga Alon.)