A new model for analysis of the random graph d-process

Nick Wormald
Monash University

Abstract:
A graph d-process starts with an empty graph on n vertices, and adds one edge at each time step, chosen uniformly at random from those pairs which are not yet edges and whose both vertices have current degree less than d. Erdős posed the question of finding the distribution of the degree sequence of the vertices in the final graph. Once upon a time, Ruciński and I showed using a martingale argument that asymptotically almost surely there is at most one vertex of degree less than d. We now have an entirely new approach to analysing this process which allows us to obtain much more accurate answers to a number of questions, such as: when does the last vertex of degree 0 disappear?
The is joint work with Andrzej Ruciński.